Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Childhood is marked by the rapid accumulation of knowledge and the prolific production of drawings. We conducted a systematic study of how children create and recognize line drawings of visual concepts. We recruited 2-10-year-olds to draw 48 categories via a kiosk at a children’s museum, resulting in >37K drawings. We analyze changes in the category-diagnostic information in these drawings using vision algorithms and annotations of object parts. We find developmental gains in children’s inclusion of category-diagnostic information that are not reducible to variation in visuomotor control or effort. Moreover, even unrecognizable drawings contain information about the animacy and size of the category children tried to draw. Using guessing games at the same kiosk, we find that children improve across childhood at recognizing each other’s line drawings. This work leverages vision algorithms to characterize developmental changes in children’s drawings and suggests that these changes reflect refinements in children’s internal representations.more » « less
-
Outward differences between cultures are very salient, with Western and East Asian cultures as a prominent comparison pair. A large literature describes cross-cultural variation in cognition, but relatively less research has explored the developmental origins of this variation. This study helps to fill the empirical gap by replicating four prominent findings documenting cross-cultural differences in children’s reasoning, visual attention, and social cognition in a cross-sectional sample of 240 3-12-year-olds from the US and China. We observe cross-cultural differences in three of the four tasks and describe the distinct developmental trajectory that each task follows throughout early and middle childhood.more » « less
-
Outward differences between cultures are very salient, with Western and East Asian cultures as a prominent comparison pair. A large literature describes cross-cultural variation in cognition, but relatively less research has explored the developmental origins of this variation. This study helps to fill the empirical gap by replicating four prominent findings documenting cross-cultural differences in children’s reasoning, visual attention, and social cognition in a cross-sectional sample of 240 3-12-year-olds from the US and China. We observe cross-cultural differences in three of the four tasks and describe the distinct developmental trajectory that each task follows throughout early and middle childhood.more » « less
-
Evidence-accumulation models (EAMs) are powerful tools for making sense of human and animal decision-making behavior. EAMs have generated significant theoretical advances in psychology, behavioral economics, and cognitive neuroscience and are increasingly used as a measurement tool in clinical research and other applied settings. Obtaining valid and reliable inferences from EAMs depends on knowing how to establish a close match between model assumptions and features of the task/data to which the model is applied. However, this knowledge is rarely articulated in the EAM literature, leaving beginners to rely on the private advice of mentors and colleagues and inefficient trial-and-error learning. In this article, we provide practical guidance for designing tasks appropriate for EAMs, relating experimental manipulations to EAM parameters, planning appropriate sample sizes, and preparing data and conducting an EAM analysis. Our advice is based on prior methodological studies and the our substantial collective experience with EAMs. By encouraging good task-design practices and warning of potential pitfalls, we hope to improve the quality and trustworthiness of future EAM research and applications.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract What makes a word easy to learn? Early‐learned words are frequent and tend to name concrete referents. But words typically do not occur in isolation. Some words are predictable from their contexts; others are less so. Here, we investigate whether predictability relates to when children start producing different words (age of acquisition; AoA). We operationalized predictability in terms of a word's surprisal in child‐directed speech, computed using n‐gram and long‐short‐term‐memory (LSTM) language models. Predictability derived from LSTMs was generally a better predictor than predictability derived from n‐gram models. Across five languages, average surprisal was positively correlated with the AoA of predicates and function words but not nouns. Controlling for concreteness and word frequency, more predictable predicates and function words were learned earlier. Differences in predictability between languages were associated with cross‐linguistic differences in AoA: the same word (when it was a predicate) was produced earlier in languages where the word was more predictable.more » « less
-
Human learning and decision-making are supported by multiple systems operating in parallel. Recent studies isolating the contributions of reinforcement learning (RL) and working memory (WM) have revealed a trade-off between the two. An interactive WM/RL computational model predicts that although high WM load slows behavioral acquisition, it also induces larger prediction errors in the RL system that enhance robustness and retention of learned behaviors. Here, we tested this account by parametrically manipulating WM load during RL in conjunction with EEG in both male and female participants and administered two surprise memory tests. We further leveraged single-trial decoding of EEG signatures of RL and WM to determine whether their interaction predicted robust retention. Consistent with the model, behavioral learning was slower for associations acquired under higher load but showed parametrically improved future retention. This paradoxical result was mirrored by EEG indices of RL, which were strengthened under higher WM loads and predictive of more robust future behavioral retention of learned stimulus–response contingencies. We further tested whether stress alters the ability to shift between the two systems strategically to maximize immediate learning versus retention of information and found that induced stress had only a limited effect on this trade-off. The present results offer a deeper understanding of the cooperative interaction between WM and RL and show that relying on WM can benefit the rapid acquisition of choice behavior during learning but impairs retention. SIGNIFICANCE STATEMENT Successful learning is achieved by the joint contribution of the dopaminergic RL system and WM. The cooperative WM/RL model was productive in improving our understanding of the interplay between the two systems during learning, demonstrating that reliance on RL computations is modulated by WM load. However, the role of WM/RL systems in the retention of learned stimulus–response associations remained unestablished. Our results show that increased neural signatures of learning, indicative of greater RL computation, under high WM load also predicted better stimulus–response retention. This result supports a trade-off between the two systems, where degraded WM increases RL processing, which improves retention. Notably, we show that this cooperative interplay remains largely unaffected by acute stress.more » « less
-
Evidence accumulation models (EAMs) are powerful tools for making sense of human and animal decision-making behaviour. EAMs have generated significant theoretical advances in psychology, behavioural economics, and cognitive neuroscience, and are increasingly used as a measurement tool in clinical research and other applied settings. Obtaining valid and reliable inferences from EAMs depends on knowing how to establish a close match between model assumptions and features of the task/data to which the model is applied. However, this knowledge is rarely articulated in the EAM literature, leaving beginners to rely on the private advice of mentors and colleagues, and on inefficient trial-and-error learning. In this article, we provide practical guidance for designing tasks appropriate for EAMs, for relating experimental manipulations to EAM parameters, for planning appropriate sample sizes, and for preparing data and conducting an EAM analysis. Our advice is based on prior methodological studies and the authors’ substantial collective experience with EAMs. By encouraging good task design practices, and warning of potential pitfalls, we hope to improve the quality and trustworthiness of future EAM research and applications.more » « less
-
Abstract Topological solitons are exciting candidates for the physical implementation of next-generation computing systems. As these solitons are nanoscale and can be controlled with minimal energy consumption, they are ideal to fulfill emerging needs for computing in the era of big data processing and storage. Magnetic domain walls (DWs) and magnetic skyrmions are two types of topological solitons that are particularly exciting for next-generation computing systems in light of their non-volatility, scalability, rich physical interactions, and ability to exhibit non-linear behaviors. Here we summarize the development of computing systems based on magnetic topological solitons, highlighting logical and neuromorphic computing with magnetic DWs and skyrmions.more » « less
-
The majority of research on infants’ and children’s understanding of emotional expressions has focused on their abilities to use emotional expressions to infer how other people feel. However, an emerging body of work suggests that emotional expressions support rich, powerful inferences not just about emotional states but also about other unobserved states, such as hidden events in the physical world and mental states of other people (e.g., beliefs and desires). Here we argue that infants and children harness others’ emotional expressions as a source of information for learning about the physical and social world broadly. This “emotion as information” framework integrates affective, developmental, and computational cognitive sciences, extending the scope of signals that count as “information” in early learning.more » « less
An official website of the United States government

Full Text Available